As 2021 draws to a close, talk inevitably turns to next-gen smartphones and their upcoming features. The beating heart of every handset is the system on a chip (SoC), packing in countless transistors that your phone’s apps, games, photographs, and more depend on. Big changes here can revolutionize your next smartphone experience, although industry maturity makes this more of a rarity these days.
Apple and Google have already announced their flagship smartphones that will last for the bulk of 2022, complete with in-house SoCs. We also know a fair bit about Qualcomm’s new Snapdragon 8 Gen 1 chipset, which will power the majority of next year’s Android smartphones, including the Galaxy S22 series. MediaTek is also making a play for the high-end with its Dimensity 9000, leaving Samsung’s next-gen Exynos as the only remaining unknown at this point.
If you want to learn more about the specifics of 2022’s flagship mobile processors, check out the links below. Otherwise, let’s explore the more general trends in store for next-gen SoCs powering 2022’s flagship handsets.
The first part of next-gen mobile processors that we already know about is the introduction of the first CPUs built on the latest Armv9 architecture, rather than the Armv8 architecture we’ve become accustomed to since 2011. Armv9 introduces a few new core features, including Scalable Vector Extension (SVE2) support, security-related Memory Tagging Extensions (MTE), and eventually hardware support for Realms for vastly improved system security. But what will be more instantly noticeable about next-gen SoCs is the CPU cores that they incorporate.
Back in May 2021, Arm announced three new Armv9-based CPUs: the Arm Cortex-X2, Cortex-A710, and Cortex-A510. These bigger, big, and little cores supersede the Cortex-X1, Cortex-A78, and Cortex-A55 found throughout 2021’s smartphone ecosystem. Once again, the Cortex-X2 will be available exclusively to partners in Arm’s Cortex-X Custom (CXC) program, but we’re looking at even broader adoption this time around.
Headline performance improvements for the 64-bit only Cortex-X2 include a 16% jump over the Cortex-X1, extending up to 30% with manufacturing, clock, and cache gains factored in. The core also offers double the machine learning performance of its predecessor. Performance enhancements for the Cortex-A710 over the A78 are more muted at just 10% for the same manufacturing process and clocks, but that means there’s room for more juice on smaller nodes. However, the core boasts a 2x machine learning improvement and 30% energy efficiency gain over its predecessor, which is great for battery life. The little Cortex-A510 provides a 35% performance improvement, 3x gain for machine learning workloads, and 20% efficiency boost compared to a Cortex-A55, again on a like-for-like process and clock speed.
However, manufacturers will each implement these cores slightly differently, resulting in slight performance variations from Arm’s numbers. We’ve already seen this with announcements from Qualcomm and MediaTek, whose chips have some key differences despite using the same CPU cores. For example, the Snapdragon 8 Gen 1 uses a “merged-core” Cortex-A510 implementation, with two CPUs sharing their number crunching and cache capabilities.
CPUs will continue on their familiar trajectory, becoming faster, smarter, and more secure.Apple and Google are an exception here, sticking to Armv8. The former is even more unique in that it continues to build CPU cores using an Arm architecture license. Apple’s A15 Bionic posts more muted 8% single-core and 22% multi-core performance improvements with the Apple A15 inside its latest iPhone 13 range. It seems like Apple has stuck with Armv8 for now, so Android is closing the gap in 2022 — although we could see a bigger jump in performance if the company finally moves to Armv9 in the successor to its M1 Macbook core.
As for Google Tensor, it makes use of 2021’s current-gen Cortex-X1, A78, and A55 Armv8 cores. So the Pixel 6’s capabilities are also markedly more current-gen rather than next-gen.
The key takeaway is that 2022 smartphones will be faster at both the high and lower ends of the processing spectrum, so everything from your games to background tasks will run that little bit faster. But perhaps more importantly, those little tasks and your typical apps will run more efficiently too, consuming less power and therefore prolonging your smartphone’s battery life. Not bad at all, if not exactly ground-breaking.
As well as new architecture and cores, there’s also a minor shift in the configuration of Android mobile CPUs. The Pixel 6’s Google Tensor SoC sports two Cortex-X1 and two A78 CPUs, along with four smaller A55s. This configuration more closely resembles Apple’s A15 Bionic and older Samsung Exynos chips, with two powerhouse cores as opposed to the single X1 core you’ll find in the Exynos 2100 and Snapdragon 888.
MediaTek and Qualcomm stick to the move conventional 1+3+4 setup next year, so this looks set to be the norm for most flagship phones. Samsung’s next-gen chipset remains the unknown and the company has form for utilizing two powerhouse cores back in its Mongoose core days, although the Exynos 2100 took the more conventional single big core approach with the more back to off-the-shelf Arm components — and we’re expecting the same approach in 2022.
After all, Arm continues to suggest that its partners pick a single high-performance core for use in mobile applications to balance area and power consumption. Based on what we’ve seen from the Cortex-X1, we’re inclined to agree. So two big cores might be a minor rather than a major trend, at least as far as Android smartphones are concerned.
Every year we anticipate big jumps to smartphone gaming performance, but 2022 could offer one of the biggest shifts to date.
The big news is Samsung leveraging graphics from PC and console powerhouse AMD. Specifically, Samsung’s next-gen Exynos SoC will be powered by AMD RDNA 2 graphics architecture. That’s the same architecture you’ll find in the latest Xbox Series X/S, PlayStation 5, and swanky AMD RX6000 series graphics cards, only drastically shrunk down for low-power mobile devices. Exciting stuff.
However, we don’t yet know exactly what to expect from RDNA 2 performance once limited to a sub-5W power budget. Some early rumors point to it crushing Apple’s current lead, but we’ll wait and see, as mobile power and thermal budgets have become increasingly tight and regularly abused in recent years.
We do know more about the performance potential of the latest Apple, Google Tensor, MediaTek, and Qualcomm chipsets. We’ve been promised 30% and 35% gains over the Snapdragon 888, according to Qualcomm and MediaTek respectively. Apple’s A15 Bionic posts between 10% and 25% graphics gains, depending on the benchmark, and therefore remains some way out in front. Google Tensor is a little better than the current-gen but not by as much.
With PC-grade graphics, mobile gaming could be about to undergo a major revolution.Features are just as important as raw performance. Qualcomm’s Snapdragon Elite Gaming package supports “desktop-level” volumetric rendering, image-based frame processing into its variable-rate shading, and frame interpolation, although there’s no ray tracing here. MediaTek is the only chip confirmed with this feature, albeit with a low-performance software implementation. Samsung’s Exynos 2200 is expected to be the first to introduce this at a hardware-accelerated level.
Mobile gaming could be about to undergo a major revolution across a selection of price points. We also have details on Arm’s latest mobile graphics technology that will likely power a range of other chipsets too — such as the mid-range Arm Mali G610 and G510. These are likely to form the bread and butter of mid-range chipsets, and the latter promises a 100% performance improvement over the previous generation Mali-G57. Talk about a major win for mid-range gamers. Other wins for mid-range Mali GPUs include gains in energy efficiency and machine learning capabilities.
Along these lines, Qualcomm has also announced its first gaming-oriented chipset — the Snapdragon G3x Gen 1. Unfortunately, the company has been shy on the chip’s specifics but there is already a development kit available from Razer. Like all of the above, we’re hoping this bears some tasty fruit for mobile gaming throughout 2022.